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The dynamics of a longitudinally cold, charged-particle beam can be simulated by dividing the beam
into slices and calculating the motion of the slice boundaries due to the longitudinal electric field
generated by the beam. On each time step, the beam charge is deposited onto an (r, z) grid, and
an existing (r, z) electrostatic field solver is used to find the longitudinal electric field. Transversely,
the beam envelope equation is used for each slice boundary separately.
In contrast to the g-factor model, it can be shown analytically that the repulsive electric field of
a slice compressed to zero length is bounded. Consequently, this model allows slices to overtake
their neighbors, effectively incorporating mixing. The model then effectively describes a cold fluid
in longitudinal z, vz phase space. Longitudinal beam compression calculations based on this cold
phase fluid model showed that slice overtaking reflects local mixing, while the global phase space
structure is preserved.
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I. INTRODUCTION

Charged-particle beams can be compressed longitudi-
nally by imposing a head-to-tail velocity gradient. The
transverse focusing lattice in which compression takes
place should be designed carefully to ensure that the
beam remain approximately matched. In order to design
such a lattice, the longitudinal dynamics of the beam
needs to be simulated accurately, such that the longi-
tudinal compression and therefore the beam current at
a given location along the lattice can be calculated cor-
rectly.

Generally, 3D particle-in-cell simulations take a large
amount of computing time and are therefore unattrac-
tive as design and scoping tools. Instead, a longitudinal
fluid/transverse envelope model as shown in Fig. 1 can
be used1. In this model, the beam is divided into slices
longitudinally. In the non-relativistic limit, the longitu-
dinal beam dynamics can then be calculated by solving
Newton’s equation for each slice boundary separately:

m
dvi

dt
= qeEz (zi) , (1)

in which m and qe are the particle mass and charge,
zi and vi are the longitudinal position and velocity of
slice boundary i, and Ez is the longitudinal electric field
generated by the beam.

In addition to the longitudinal position and velocity,
a horizontal and vertical beam semi-axis is associated
with each slice boundary. The transverse dynamics of the
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FIG. 1. The longitudinal fluid/transverse envelope model.

beam are then calculated by employing the transverse en-
velope equation for each slice boundary separately. Since
the shielding of the longitudinal electric field by the con-
ducting pipe surrounding the beam depends on the dis-
tance of the beam to the pipe wall, an accurate calcu-
lation of the transverse beam dynamics is necessary to
simulate the longitudinal dynamics correctly.

The longitudinal electric field Ez can be calculated
in several ways. Most commonly, the g-factor model is
used2:

Ez = − g

4πε0

∂λ

∂z
, (2)

in which λ is the line charge density and g is a geometry
factor given by

g = ln
(

R2

ahav

)
, (3)
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in which R is the pipe radius and ah and av are the hor-
izontal and vertical beam semi-axes. The g-factor model
is valid if the beam density ρ is uniform, and the beam
semi-axes as well as the line charge density vary slowly
over a longitudinal distance comparable to the pipe ra-
dius.

The g-factor model applied to an ideal cold fluid breaks
down in three cases. Near the beam ends, the beam semi-
axes and line charge density vary rapidly, thereby violat-
ing the assumptions of the g-factor model. Secondly, for
highly compressed beams, the beam length may be short
or comparable to the pipe radius. Finally, in shocks the
beam properties vary rapidly over a short distance.

More accurate variants of the g-factor model have been
derived, in which the restrictions on the validity of the
g-factor model are eased3. Using these models, it was
noticed in simulations that slices tend to overtake each
other, particularly near the beam ends if a large (>∼ 100)
number of slices were used. This produced unphysical
results, since the charge of a slice compressed to zero
width leads to an infinitely large current at that location.

Previously, several explanations for the occurrence of
slice overtaking have been proposed4. First, the fluid
model may be invalid in the physical regime of interest.
Secondly, the nonlinear nature of the fluid equations may
cause longitudinal acoustic waves occurring in the beam
to steepen into shock waves. The fluid model then breaks
down as fluid properties become double-valued. Finally,
the calculated longitudinal electric field may be insuffi-
ciently accurate, particularly near the beam ends.

In this paper, we will derive an analytic expression for
the longitudinal electric field in a charged-particle beam.
From this expression, we can show that the model shown
in Fig. 1 allows slice overtaking to occur. This means
that a conventional fluid model breaks down. Next, we
describe a new method to calculate the space charge field
by depositing the charge of the beam onto an (r, z) grid
and using an existing (r, z) field solver to find the longi-
tudinal electric field. This method should give accurate
results even in the regimes where the g-factor model fails.

In previous models, the line charge density was calcu-
lated by dividing the charge in a slice by the distance be-
tween the two slice boundaries. This leads to an infinitely
large line charge density in the event of slice overtaking.
The current, as needed in the envelope equation, would
then become infinite. Instead, the line charge density
can now be calculated by summing the charge deposited
onto the (r, z) grid at a given z-location. This forces the
line charge density to be finite, even in the event of slice
overtaking. We then allow slices in the model to pass
through each other. This results in a cold phase fluid
model, in which the beam is described as a cold fluid in
z, vz phase space.

II. THE LONGITUDINAL FIELD OF A
SPACE-CHARGE DOMINATED BEAM

First, we derive analytically the longitudinal electric
field of a beam in an infinitely long circular pipe. We
approximate the beam to be circular transversely instead
of elliptical, using a =

√
ahav for the radius. Poisson’s

equation can then be written as

1
r

∂

∂r

(
r
∂φ

∂r

)
+

∂2φ

∂z2
= − ρ

ε0
. (4)

The solution to this equation can be written in terms of
a Fourier-Bessel expansion:

φ (r, z) =
∞∑

n=1

fn (z)J0

(xnr

R

)
, (5)

in which J0 is the Bessel function of order zero, xn is
the nth zero of J0, and fn (z) is a set of functions to
be determined. We assume that the charge density is
transversely uniform up to the beam radius a (z):

ρ (r, z) =
λ (z)

πa (z)2
θ

(
1− r

a (z)

)
, (6)

in which λ is the line charge density and θ is the Heav-
iside step function. For different values of n, the Bessel
functions J0(xnr/R) are orthogonal5. We can then find
an ordinary differential equation for fn (z):

f ′′n (z)−fn (z)
(xn

R

)2

=

− 2
ε0

λ (z)
πa (z)

1
[xnJ1(xn)]2

xn

R
J1

(
xna (z)

R

)
. (7)

in which the primes denote differentiation with respect
to z. This equation can be solved as3

fn(z) =
1

πε0

1
[xnJ1(xn)]2∫ ∞

−∞
exp

(
−xn

R
|z − z′|

)
J1

(
xna (z′)

R

)
λ (z′)
a (z′)

dz′, (8)

in which we used the boundary condition that fn (z) → 0
for |z| → ∞. Summing over the Fourier-Bessel compo-
nents then gives

φ(r, z) =
1

πε0

∞∑
n=1

J0

(xnr

R

) 1
[xnJ1(xn)]2

∫ ∞

−∞
exp

(
−xn

R
|z − z′|

)
J1

(
xna (z′)

R

)
λ (z′)
a (z′)

dz′. (9)

To find the longitudinal electric field, we take the par-
tial derivative with respect to z and average transversely:

〈Ez (z)〉 = − 1
πa2

∫ a

0

∂φ (r, z)
∂z

2πrdr. (10)
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This yields

〈Ez (z)〉 =
2

πε0a (z)

∞∑
n=1

1
[xnJ1(xn)]2

J1

(
xna (z)

R

)

∫ ∞

−∞
sgn (z − z′) exp

(
−xn

R
|z − z′|

)

·
{

J1

(
xna (z′)

R

)
λ (z′)
a (z′)

}
dz′. (11)

Incidentally, we can derive the g-factor model from this
equation by assuming that the charge density λ/πa2 is
uniform throughout the beam and expanding the factor
in brackets in a Taylor-series around z′ = z:

〈Ez (z)〉= − 2
πε0

∂λ (z)
∂z

∞∑
n=1

R

xna

1
[xnJ1(xn)]2

J1

(xna

R

)
J0

(xna

R

)
. (12)

Using Eq. (A3) in the Appendix, we can evaluate the
sum as 1

4 ln (R/a) to find the g-factor model given in
Eqs. (2), (3).

Now we can calculate the longitudinal electric field act-
ing on a slice boundary for a single slice of length L with
uniform line charge density λ and beam radius a. In
Eq. (11), we use λ (z′) = λ [θ (z′ − L)− θ (z′ + L)] and
a (z′) = a to find

〈Ez (z)〉 =
2λ

πε0a2

∞∑
n=1

[
J1

(
xna
R

)

xnJ1(xn)

]2
R

xn

2 exp
(
−xnL

R

)
sinh

(xnz

R

)
, (13)

in which 2L is the length of the slice. On the slice bound-
aries, z = ±L, we find

〈Ez (±L)〉 = ± 2λ

πε0a2

∞∑
n=1

[
J1

(
xna
R

)

xnJ1(xn)

]2
R

xn
[
1− exp

(
−2xnL

R

)]
. (14)

For a slice compressed to zero length (L → 0), this gives

〈Ez〉± = ± 4λL

πε0a2

∞∑
n=1

[
J1

(
xna
R

)

xnJ1(xn)

]2

. (15)

The sum on the right-hand-side is equal to 1
4 , inde-

pendent of the ratio a/R, as shown in the Appendix
[Eq. (A4)]. Using 2Lλ = Q, in which Q is the charge
in the slice, we find

〈Ez〉± = ± Q

2πε0a2
. (16)

This equation shows that the repulsive electric field is
equal to the field of an infinite slab of surface charge

density Q/πa2, as expected from Gauss’s law. The re-
pulsive electric field is finite for a non-zero beam radius
a. Consequently, if two slice boundaries approach each
other with a sufficiently large velocity, they will overtake
each other. In comparison, in the g-factor model in Eq.
(3) the derivative ∂λ/∂z would become infinite, yielding
an unbounded repulsive force between the slice bound-
aries that would prevent slice overtaking.

III. THE COLD PHASE FLUID MODEL

We will now describe the cold phase fluid model, in
which the longitudinal electric field is calculated accu-
rately and slices are allowed to overtake each other. This
model was implemented as a new module, named Her-
mes, of the WARP simulation package6. In order to cal-
culate the longitudinal electric field accurately, WARP’s
(r, z) field solver was used instead of the g-factor model.
The charge of the beam slices is deposited onto an (r, z)
grid, assuming that transversely all slices are circular in-
stead of elliptical, and the field solver is called to cal-
culate the electric field. This allows us to calculate the
electric field correctly even near the beam ends, and also
for highly compressed beams. In addition, the field can
be calculated even after slice overtaking has occured.

The line charge density is calculated at a given z loca-
tion by adding the charge deposited on the (r, z) grid at
that location. This prevents the line charge density from
becoming infinite in the event of slice overtaking. Effec-
tively, the line charge density is averaged over a longitu-
dinal distance corresponding to one grid cell width. The
current, which is needed in the transverse envelope equa-
tion, is then calculated by multiplying the line charge
density by the velocity of the slice boundary.

The longitudinal dynamics of the beam can most easily
be understood as the motion of a cold phase fluid in z, vz

phase space. The phase fluid is represented as a contin-
uous curve in phase space. Because the curve has zero
width, the phase fluid is considered to be cold. However,
since we allow slice overtaking to occur in this model,
the curve may fold over in phase space, which means
that more than one fluid velocity may be associated with
a given location z. In the limit of extreme overtaking,
the resulting curve in phase space may be seen to repre-
sent in an approximate manner a thermal distribution in
vz. In most cases, however, slice overtaking is observed
to occur on a much smaller scale, indicative of mixing on
a micro-scale. These cases cannot be treated by a con-
ventional fluid model, in which the current would have
become infinitely large during the event of slice overtak-
ing, causing the transverse envelope equation to break
down.

The cold phase fluid model bears some similarities to
a particle-in-cell model. The main differences are the
connectivity between the slice boundaries and the ability
of slices to stretch and contract longitudinally and trans-
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versely. In a conventional particle-in-cell simulation, par-
ticles are not ordered and have a fixed size.

IV. EXAMPLE CALCULATION

We have applied the cold phase fluid model to design
an example drift compression system of the Integrated
Research Experiment (IRE), the next major step envi-
sioned for Heavy Ion Inertial Fusion8. To design such a
system, we first define a desired final pulse shape at the
end of drift compression. We transport this beam back-
ward in time over one half period of a transport lattice.
As the beam expands longitudinally during this run, its
current decreases, and we adjust the lattice half period
and quadrupole strength to match the new current. We
then reload the beam at the end of drift compression,
and run it through the adjusted lattice half period. This
process is iterated over until the properties of the half
period have converged. We then continue to the next
lattice half period. All lattice half periods are set up us-
ing this routine, until the current at the beam center has
decreased to a user-specified value at the beginning of
drift compression. This procedure sets up the transverse
focusing lattice, and also finds the required initial beam
profile and head-to-tail velocity gradient7.

The beam current changes most rapidly near the end
of drift compression, causing a mismatch to occur there.
In the backward calculation, this mismatch then persists
until the beginning of drift compression. To minimize the
occurrence of mismatches, the beam can be rematched
at the beginning of drift compression. Since the beam
current changes slowly compared to a betatron period for
most of the drift compression, after rematching the beam
stays adiabatically matched in a forward run. Near the
end of drift compression, the rapidly increasing current
again incites a mismatch. This mismatch does not affect
the beam as seriously though, because it lasts for only a
short distance.

Rematching the beam at the beginning of drift com-
pression causes the forward run to differ from the back-
ward run. The final beam pulse will therefore be different
from the desired final beam pulse. The difference is typi-
cally negligible7, since the beam radii in the forward and
backward run are approximately equal on average even
after rematching.

Generally, the drift compression section for heavy ion
inertial fusion is designed such that the beam expands
transversely near the end of drift compression in order
to enable focusing the beam onto a small spot. In the
example drift compression system shown here, the beam
expands smoothly from 1.5 cm at the beginning of drift
compression to 6 cm at the end. The aperture was chosen
to increase in finite steps. This drastically reduces the
run time of a comparative 3D particle-in-cell simulation
of the system, since the capacity matrix to calculate the
image charges on the pipe needs to be recalculated only
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FIG. 2. The horizontal and vertical beam semi-axes, as
well as the aperture, as a function of position along the drift
compression section.

a few times.
A drift compression section was designed for a K+ ion

beam of 3.90625 µC at an energy of 200 MeV, which are
typical IRE parameters. The final beam duration was
chosen to be 3 ns, while the final beam profile consisted
of a flat-top with 25% parabolic ends on each side. The
beam was divided into 400 slices longitudinally, each slice
having the same amount of charge. The longitudinal elec-
tric field was calculated on a 64× 512 (r, z) grid. A time
step size was used that corresponds to a distance traveled
by the beam of about 5 mm.

Figure 2 shows the horizontal and vertical semi-axes
of the beam along the drift compression section both for
the beam center and for the tail of the beam (defined as
the leftmost slice boundary in the simulation). Whereas
virtually no mismatch occurs at the beam center, near
the end of drift compression a small mismatch develops at
the tail, where the beam current increases most rapidly.
A similar mismatch occurs for the head of the beam.

The position of the slice boundaries at the end of drift
compression is shown in Fig. 3 as a function of the slice
index. On a global scale, this curve seems to be very
smooth. However, there were nine occurrences of slice
overtaking in this beam. An example of slice overtaking
occurring near the beam center is shown in Fig. 4. This
illustrates that slice overtaking should not be regarded as
a major deviation of the behavior of the beam. Rather,
slice overtaking suggests the occurrence of longitudinal
mixing on a local scale.

The longitudinal phase space is shown in Fig. 5. Near
the beam ends, an increase in the longitudinal emittance
is manifested by a larger area of phase space occupied by
the beam. The emittance growth can be understood in
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FIG. 3. The position of the slice boundaries as a function
of their index at the end of the drift compression section.
Even though the curve appears to be very smooth and mono-
tonically increasing, this figure contains nine slice overtaking
events.
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FIG. 4. The position of the slice boundaries of a short sec-
tion of the beam as a function of their index at the end of the
drift compression section, showing an example of slice over-
taking.
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FIG. 5. The longitudinal phase space of the beam at the
end of the drift compression section.

more detail by performing 1D (longitudinal), 2D (r, z),
or 3D particle-in-cell simulations of the beam. Globally,
the phase space area occupied by the beam is still well
represented by a smooth curve, which validates the ap-
plicability of the cold phase space model in this regime.

Figure 6 shows the longitudinal phase space of a section
of the beam in which slice overtaking occurred (compare
to Fig. 4). The longitudinal velocity has become double
valued as a consequence of slice overtaking. This would
cause a conventional fluid model to break down.

V. DISCUSSION

The longitudinal dynamics of a charged particle beam
can be simulated by dividing the beam into slices longi-
tudinally and calculating the longitudinal motion of the
slice boundaries. Previously, the beam was then treated
as a 1D fluid, in which slices retained their order, and
slice overtaking was considered to be caused by an insuf-
ficiently accurate simulation. In addition, a slice com-
pressed to zero width would have an infinite line charge
density, resulting in an infinite current in the transverse
envelope equation. In practice, simulations were there-
fore stopped as soon as two slices overtook each other.

However, the repulsive force on a slice boundary being
bounded as a slice is compressed to zero width implies
that this model intrinsically, though implicitly, includes
slice overtaking. A simple fluid model is therefore unsuit-
able to describe the longitudinal dynamics of a beam and
should be replaced by a cold phase fluid model. An infi-
nite line charge density can then be avoided by averaging
the charge density over a small longitudinal distance.

In simulations of our cold phase fluid model, slice over-
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FIG. 6. The longitudinal phase space of a section of the
beam at the end of the drift compression section, showing
that the longitudinal velocity has become double valued due
to slice overtaking.

taking occurred regularly without disturbing the overall
dynamics of the beam. Slice overtaking may be caused
by the numerics as well as by the physics of the problem.
Even if numerics are the only cause of slice overtaking,
a cold phase fluid model is preferable over a simple fluid
model. A cold phase fluid model allows us to perform
a sequence of simulations of increasing accuracy. In the
end, in a converged simulation either slices do not over-
take each other, or the few remaining slice overtaking
events do not appreciably affect the calculation of the
physical quantities we are interested in. A simple fluid
model does not allow us to perform such a sequence of
simulations, since numerous simulations would have to be
halted prematurely due to slice overtaking. In addition,
increasing the number of slices to improve the accuracy
of a simulation leads to a closer distance between the slice
boundaries, making slice overtaking more likely. There-
fore, even very accurate simulations with a large number
of slices may break down if a simple fluid model is used.

Slice overtaking caused by the physics of the problem
is indicative of local longitudinal mixing of the beam.
Rapidly expanding ends of a highly compressed beam, or
imperfect matching as in the example we showed, may
lead to local mixing and therefore to slice overtaking in
the cold phase fluid model. In addition, to investigate the
effect on drift compression of errors in the initial longi-
tudinal velocity gradient, a random longitudinal velocity
error may be added to the slice boundaries initially. This
may lead to slice overtaking at an early stage of the sim-
ulation.

In the case of extreme slice overtaking, the resulting
phase space structure can be seen as representing the
thermal spread in the longitudinal velocity. Additional

calculations using particle-in-cell simulations would be
necessary to understand such a phase space structure
fully.
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APPENDIX

The Kneser-Sommerfeld formula for a Bessel function
of order zero is given by9,10

∞∑
n=1

J0(xnα)J0(xnα′)
(s2 − x2

n) [J1(xn)]2
=

πJ0 (αs)
4J0 (s)

[J0 (s)Y0 (α′s)− Y0 (s)J0 (α′s)] , (A1)

for 0 ≤ α ≤ α′ ≤ 1. This formula can be derived us-
ing Cauchy’s residue theorem. A different version of the
Kneser-Sommerfeld formula given in the classic text on
Bessel functions by Watson11 is incorrect12–15.

By taking the derivative with respect to s of both sides
of this equation, and evaluating the result at s = 0, we
find
∞∑

n=1

J0 (xnα)J0 (xnα′)
x4

n [J1 (xn)]2
=

1
8

[(
α2 + α′ 2

)
ln α + α2 − 1

]
.

(A2)

Next, we take the derivative with respect to α′ to find
∞∑

n=1

J0 (xnα)J1 (xnα′)
x3

n [J1 (xn)]2
= −1

4
α′ ln α. (A3)

For α = α′, this reduces to the Bessel sum appearing in
Eq. (12). By taking the derivative with respect to α, we
find

∞∑
n=1

J1 (xnα) J1 (xnα′)
[xnJ1 (xn)]2

=
1
4

α′

α
, (A4)

which for α = α′ reduces to the Bessel sum used to derive
Eq. (16).

Alternatively, Eqs. (A3), (A4) can be derived by set-
ting the radial electric field of an infinitely long cylin-
drical beam with radius a equal to the radial electric
field calculated from the electrostatic potential given in
Eq. (9).
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